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With connections to bounded rational game theory, information theory and sta-
tistical mechanics, Product Distribution (PD) theory provides a new framework for
performing distributed optimization. Furthermore, as an extension of Collective In-
telligence, PD theory connects distributed optimization to distributed Reinforcement
Learning (RL). This paper provides an overview of PD theory and details an algo-
rithm for performing optimization derived from it. The approach is demonstrated
on two unconstrained example optimization problems, one with discrete variables and
one with continuous variables. To highlight the connections between PD theory and
distributed RL, the results are compared with those obtained with distributed rein-
forcement learning inspired optimization approaches. The inter-relationship of the
techniques is discussed.

1.1 Introduction

Traditional optimization techniques use centralized approaches for obtaining a
solution to a problem. Although significant effort has been made to make the
techniques applicable to large, sparsely connected problems, an alternate ap-
proach pursued here is to distribute the optimization among agents that rep-
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resent the variables in the problem. Formulating the problem as a distributed
stochastic optimization allows for the application of techniques from machine
learning, statistics, multi-agent systems, and game theory. In addition, ap-
proaches can be developed using these fields which take advantage of the sparse,
local structure of certain optimization problems. The current work leverages the
aforementioned fields by applying a Collective Intelligence (COIN) technique,
Product Distribution (PD) theory, to several example optimization problems.
In this approach, the optimization becomes finding the equilibrium of a system
whose agents are the variables and whose world utility is the objective function.

Typically in stochastic optimization approaches probability distributions are
used to help search for a point in the variable space which optimizes the objec-
tive function. In contrast, in the PD approach the search is for a probability
distribution across the variable space that optimizes an associated Lagrangian.
Since the probability distribution is a vector in a Euclidean space, the search
can be done via gradient based methods even if the variable space is categorical.
Similar techniques have been successfully applied to a variety of distributed op-
timization problems including network routing, computing resource allocation,
and data collection by autonomous rovers [2, 1].

PD theory can be viewed as the information-theoretic extension of conven-
tional full-rationality game theory to the case of bounded rational agents [3].
Information theory shows that the equilibrium of a game played by bounded
rational agents is the optimizer of a Lagrangian of the probability distribu-
tion of the agents’ joint-moves. In any game, bounded rational or otherwise,
the agents are independent, with each agent i choosing its move xi at any in-
stant by sampling its probability distribution (mixed strategy) at that instant,
qi(xi). Accordingly, the distribution of the joint-moves is a product distribution,
P (x) =

∏

i qi(xi). In this representation, all coupling between the agents occurs
indirectly; it is the separate distributions of the agents {qi} that are coupled,
while the actual moves of the agents are independent. As a result the optimiza-
tion of the Lagrangian can be done in a completely distributed manner. This
approach provides a broadly applicable way to cast any constrained optimization
problem as the equilibrating process of a multi-agent system, together with an
efficient method for that equilibrating process.

The next section presents the approaches for minimizing the Lagrangian
provided by PD theory and the related approaches obtained from distributed
RL. The performance on several example problems is then presented.

1.2 Optimizing the Lagrangian

Given that the agents in a multi-agent system are bounded rational, if they play
a team game with world utility G, their equilibrium will be the optimizer of G.
The equilibrium can be found by minimizing a Lagrangian which is a function
of the agents’ probabilities [3]. Specifically, for the unconstrained optimization
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problem,
min

~x
G(~x)

assume each agent sets one component of ~x as that agent’s action. The La-
grangian Li(qi) for each agent as a function of the probability distribution across
its actions is,

Li(qi) = E[G(xi, x(i))] − T S(qi)

=
∑

xi

qi(xi)E[G(xi, x(i))|xi] − T S(qi)

where G is the world utility (system objective) which depends upon the ac-
tion of agent i, xi, and the actions of the other agents, x(i). The expectation
E[G(xi, x(i))|xi] is evaluated according to the distributions of the agents other
than i:

P (x(i)) =
∏

j 6=i

qj(xj)

The entropy S is given by:

S(qi) = −
∑

xj

qi(xj) ln qi(xj)

Each agent then addresses the following local optimization problem,

min
qi

Li(qi)

s.t.
∑

xi

qi(xi) = 1, qi(xi) ≥ 0,∀xi

The Lagrangian is composed of two terms weighted by the temperature T :
the expected reward across i’s actions, and the entropy associated with the
probability distribution across i’s actions. During the minimization of the La-
grangian, the temperature provides the means to trade-off exploitation of good
actions (low temperature) with exploration of other possible actions (high tem-
perature).

In this paper two algorithms for optimizing the Lagrangian are considered.
The first is a variant of Newton’s method for directly descending the Lagrangian.
The second is Brouwer updating, which, under different names, is perhaps the
most common scheme employed in RL-based algorithms for finding game equi-
libria.

1.2.1 Nearest Newton descent

The minimization of the Lagrangian is amenable to solution using gradient de-
scent or Newton updating since both the gradient and the Hessian are obtained
in closed form. Using Newton updating and enforcing the constraint on total
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probability, the following update rule, referred to as Nearest Newton [3, ?], is
obtained:

qi(xi) → qi(xi) − αqi(xi)×
{

E[G|xi] − E[G]

T
+ S(qi) + ln qi(xi)

}

(1.1)

where α plays the role of a step size. The step size is required since the expec-
tations result from the current probability distributions.

1.2.2 Role of private utilities

Performing the update at each iteration involves a separate conditional expected
utility for each agent. These are estimated either exactly if a closed form expres-
sion is available or with Monte-Carlo sampling if no simple closed form exists.
Since accurate estimates usually require extensive sampling, the G occurring in
each agent i’s update rule can be replaced with a private utility gi chosen to
ensure that the Monte Carlo estimation of E(gi|xi) has both low bias (with re-
spect to estimating E(G|xi) and low variance [7]. Intuitively bias represents the
alignment between the private utility and world utility. With zero bias, updates
which reduce the private utility are guaranteed to also reduce the world utility.
It is also desirable for an agent to distinguish its contribution from that of the
other agents: variance measures this sensitivity. With low variance, the agents
can perform the individual optimizations accurately without a large number of
Monte-Carlo samples.

Two private utilities are used for the example problems in this work, Team
Game (TG) and Wonderful Life Utility (WLU)[3, ?, 2, 1]. These are defined as:

gTGi
(xi, x(i)) = G(xi, x(i))

gWLUi
(xi, x(i)) = G(xi, x(i)) − G(CLi, x(i))

For the team game, the private utility is simply the world utility. For WLU, the
private utility is the world utility minus the world utility with the agent action
“clamped” by the value CLi. Both of these utilities have zero bias. However,
due to the subtracted term, WLU has much lower variance than TG.

1.2.3 Brouwer updating

An alternate way to try to find the q that minimizes the Lagrangian is an iterative
process akin to the best-response scheme of game theory [8]. Given any current
distribution q, all agents i simultaneously replace their current distributions. In
this replacement each agent i replaces qi with the distribution given by More
precisely the update rule becomes,

qi(xi) = e
− 1

T
Eq(i)

[gi|xi]/
∑

xi

e
− 1

T
Eq(i)

[gi|xi] (1.2)
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where the expectations are based on the current q(i). The conditional expected
utilities can, if necessary, be estimated once again using Monte-Carlo sampling.
One problem with Brouwer updating is that there is no reason to believe that it
will converge. In practice the Monte Carlo samples are “aged” by a factor γ, to
weight older sample points less heavily than more recent points. See [2, 1] for de-
tails. This modification to Brouwer updating still provides no formal guarantees
although it improves performance. Such guarantees are obtained, however, if
rather than conventional “parallel” Brouwer updating, one uses “serial Brouwer
updating”, in which only one agent at time updates its distribution.

1.3 Results

1.3.1 Discrete optimization example problem

A discrete optimization problem is used to compare the methods for minimiz-
ing the Lagrangian. Specifically, the bin packing problem from the operations
research literature was selected [4]. This problem consists of assigning N items
(the agents) of differing sizes into the smallest number of bins each with capacity
c. For the current study instances were chosen which have a designed minimum
number of bins and were obtained from the OR-Library [4]. The instances con-
sisted of 60 items to be packed in groups of three into 20 bins each of capacity
100. Since in general the minimum number of bins is not known, the move space
of the agents was set to the number of items. The objective function used is,

G =

{
∑N

i=1[(
c
2 )2 − (xi −

c
2 )2] if xi ≤ c

∑N
i=1(xi −

c
2 )2 if xi > c

(1.3)

where xi is the total size of the items in bin i. This form of the objective
function encourages either full or empty bins and strongly penalizes overfilled
bins. Although PD theory can be extended to explicitly include constraints, the
penalty function formulation in (1.3) allows for a more direct comparison of the
approaches.

A problem single variant was selected and 20 cases used to evaluate the
performance of the approaches. Figure 1.1 compares all three schemes. Shown
is the average objective as a function of iteration. The greedy serial Brouwer
approach updates only the agent causing the largest decrease in the Lagrangian
at each iteration. For these results WLU is used with the clamping value set to
0, removing that item from the objective evaluation. The remaining parameter
settings are α = 0.1, γ = 0.8, and 100 Monte-Carlo samples for each block.
The Nearest Newton approach and parallel Brouwer are seen to obtain similar
results, with Nearest Newton converging faster. Both tend to find solutions
which are one to two bins over the minimum required. Greedy serial Brouwer
tends to obtain poorer solutions due to the combination of limited sampling and
overly greedy updating. Since only a single agent is updated each iteration the
convergence is also quite slow, particularly for the greedy implementation where
the agents must all evaluate evaluate their private utilities.
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Figure 1.1: Comparison of Lagrangian minimization techniques for the bin packing
problem.

A more efficient alternative is to delegate the agent to be updated at the
start of each iteration - either randomly or sequentially. Now only a single
agent needs to evaluate its private utility, reducing the number of function calls
by a factor of (N+1)/2. This variant is compared in Figure 1.2 on a function
call rather than iteration basis. The agents were updated in sequence although
random selection obtained similar results. For comparison Nearest Newton is
shown with two different Monte-Carlo block sizes: 100 and 20. Using Nearest
Newton with a reduced block size is seen to be more effective at lowering the
number of function calls, although the sequential serial Brouwer does manage to
find a comparable final objective. The initial behavior of the serial Brouwer is
again the result of limited sampling and overly aggressive updating. The slower
convergence results from expending Monte-Carlo samples, and the associated
function calls, on updating agents which are not important to the reducing the
Lagrangian. This arises from the current implementation which updates each
agent every N iterations. Variants which estimate which agent to update are
likely to be more efficient.

1.3.2 Continuous optimization example problem

To illustrate the Lagrangian minimization techniques in the continuous domain,
a classical calculus of variations problem is solved, the Brachistochrone prob-
lem [5]. In this problem the objective is to find the minimum time trajectory
between two points for an object moving only under the influence of gravity.
Following [5] the objective function is:

t12 =

∫ x2,y2

x1,y1

f dx

where

f = (1 + (dy/dx)2)1/2 (2gy)1/2 (1.4)
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Figure 1.2: Comparison of modified Lagrangian minimization techniques on a func-
tion call basis for the bin packing problem.

To cast the problem as an optimization with respect to the vertical location
of points along the trajectory both the integral and the derivative are approx-
imated. A trapezoidal approximation is made to the integral at N points and
a central finite difference is used for the derivative. The result is the following
optimization problem,

min
~y

G =
∆x

2
[f0 + 2f1 + ... + 2fN − 1 + 2fN ]

where, for the interior points

fi = (1 + [
1

2∆x
(yi+1 − yi−1]

2)1/2 (2gyi)
1/2 (1.5)

For the boundary points, f0 and fN , forward or backward approximations are
used for the derivatives.

This optimization problem was solved by a commercially available gradient
based optimizer [6] and by the Lagrangian minimization approaches described in
Section 1.2. The approaches described in Section 1.2 are particularly applicable
to objectives such as Eq. 1.5 due to sparse nature of the interactions between
the variables (agents). The contributions to the objective are functions only of
a single variable and that variables neighbors. This leads directly to a private
utility, for the interior points, of the form,

gi(yi−1, yi, yi+1) =
∆x

2

[

2fi−1(yi−2, yi−1, yi)

+2fi(yi−1, yi, yi+1)

+2fi+1(yi, yi+1, yi+2)
]

(1.6)

Similar private utilities can be obtained for the first and last nodes. Note this
private utility has no bias since it includes all the dependencies of the world
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Figure 1.3: Comparison of Lagrangian minimization approaches using sampling for
the Brachistochrone problem.

utility (objective function) upon agent i. Since the dependencies are known,
only the other agents’ probabilities indicated in 1.6 are required to evaluate the
expectations. This suggests two possible variants of the techniques described
in Section 1.2. First, sampling could be used as before but in place of the
Wonderful Life Utility, use Eq. 1.6. Second, the probability distributions can be
integrated along with Eq. 1.6 to obtain the expected private utilities. For either
approach the probability updating is the same, only the approach for obtaining
the expected utilities differs. Also note that second variant is now deterministic
since no sampling is involved.

Figure 1.3 shows the convergence history of the objective function for the
gradient based, parallel Brouwer and Newton approaches. The serial Brouwer
result is not shown since there is no longer any efficiency advantage given the
easily calculated private utility. Relevant parameters are α = 0.2, γ = 0.8, 10
Monte-Carlo samples, and T = 0.01. Also, the starting point is set to (0,0) and
the ending point to (1,1). In all cases, the optimizations were performed 10 times
and the 90% confidence bars are shown. For the gradient based optimization a
random starting point was used each time. The sampled approaches (Newton
and Brouwer) perform comparably, finding a minimum about 5% higher than
the gradient based optimum. The key result is comparable convergence rate to
the gradient based approach in terms of function calls.

Figure 1.4 shows converged probability distributions for the agents versus
their position from the analytical case. This illustrates the additional infor-
mation provided by the non-gradient based approaches approaches: non-linear
sensitivities. At convergence the probability distributions are related to the
objective through the Boltzmann distribution. As a result, sensitivities of the
optimum with respect to each variable are provided without additional compu-
tational cost.

Figure 1.5 shows the iteration history for the analytical case. The upper
plot shows the objective function, while the lower plot shows the convergence
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Figure 1.4: Converged probability distribution for the Brachistochrone problem.
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Figure 1.5: Comparison of Lagrangian minimization approaches for analytical version
of the Brachistochrone problem.

criteria. While all three quickly find a good minimum, serial Brouwer is actu-
ally converging faster. This makes sense, especially for the sequential ordering,
the agents can use probabilities from their neighbors just after they have been
updated.

1.4 Conclusions

Product Distribution (PD) theory provides an effective framework for perform-
ing distributed optimization. One theoretical perspective for PD theory has
been provided and a distributed optimization algorithm based upon it has been
developed. The approach has been demonstrated on two example problems, one
discrete and one continuous. The comparisons included results obtained with
variants of distributed Reinforcement Learning (RL) inspired optimization ap-
proaches. The inter-relationship between the approaches has been highlighted.
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